The N- and C-terminal domains of the NS1 protein of influenza B virus can independently inhibit IRF-3 and beta interferon promoter activation.

نویسندگان

  • Nicola R Donelan
  • Bianca Dauber
  • Xiuyan Wang
  • Christopher F Basler
  • Thorsten Wolff
  • Adolfo García-Sastre
چکیده

The NS1 proteins of influenza A and B viruses (A/NS1 and B/NS1 proteins) have only approximately 20% amino acid sequence identity. Nevertheless, these proteins show several functional similarities, such as their ability to bind to the same RNA targets and to inhibit the activation of protein kinase R in vitro. A critical function of the A/NS1 protein is the inhibition of synthesis of alpha/beta interferon (IFN-alpha/beta) during viral infection. Recently, it was also found that the B/NS1 protein inhibits IFN-alpha/beta synthesis in virus-infected cells. We have now found that the expression of the B/NS1 protein complements the growth of an influenza A virus with A/NS1 deleted. Expression of the full-length B/NS1 protein (281 amino acids), as well as either its N-terminal RNA-binding domain (amino acids 1 to 93) or C-terminal domain (amino acids 94 to 281), in the absence of any other influenza B virus proteins resulted in the inhibition of IRF-3 nuclear translocation and IFN-beta promoter activation. A mutational analysis of the truncated B/NS1(1-93) protein showed that RNA-binding activity correlated with IFN-beta promoter inhibition. In addition, a recombinant influenza B virus with NS1 deleted induces higher levels of IRF-3 activation, as determined by its nuclear translocation, and of IFN-alpha/beta synthesis than wild-type influenza B virus. Our results support the hypothesis that the NS1 protein of influenza B virus plays an important role in antagonizing the IRF-3- and IFN-induced antiviral host responses to virus infection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus.

The retinoic acid-inducible gene I product (RIG-I) has been identified as a cellular sensor of RNA virus infection resulting in beta interferon (IFN-beta) induction. However, many viruses are known to encode viral products that inhibit IFN-beta production. In the case of influenza A virus, the viral nonstructural protein 1 (NS1) prevents the induction of the IFN-beta promoter by inhibiting the ...

متن کامل

The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3.

The Ebola virus VP35 protein was previously found to act as an interferon (IFN) antagonist which could complement growth of influenza delNS1 virus, a mutant influenza virus lacking the influenza virus IFN antagonist protein, NS1. The Ebola virus VP35 could also prevent the virus- or double-stranded RNA-mediated transcriptional activation of both the beta IFN (IFN-beta) promoter and the IFN-stim...

متن کامل

The C-Terminal Effector Domain of Non-Structural Protein 1 of Influenza A Virus Blocks IFN-β Production by Targeting TNF Receptor-Associated Factor 3

Influenza A virus non-structural protein 1 (NS1) antagonizes interferon response through diverse strategies, particularly by inhibiting the activation of interferon regulatory factor 3 (IRF3) and IFN-β transcription. However, the underlying mechanisms used by the NS1 C-terminal effector domain (ED) to inhibit the activation of IFN-β pathway are not well understood. In this study, we used influe...

متن کامل

Multiple anti-interferon actions of the influenza A virus NS1 protein.

The replication and pathogenicity of influenza A virus (FLUAV) are controlled in part by the alpha/beta interferon (IFN-alpha/beta) system. This virus-host interplay is dependent on the production of IFN-alpha/beta and on the capacity of the viral nonstructural protein NS1 to counteract the IFN system. Two different mechanisms have been described for NS1, namely, blocking the activation of IFN ...

متن کامل

Prokaryotic Expression of Influenza A virus Nucleoprotein Fused to Mycobacterial Heat Shock Protein70

Background and Aims: The novel approaches in influenza vaccination have targeted more conserved viral proteins such as nucleoprotein (NP) to provide cross protection against all serotypes of influenza A viruses. Influenza specific cytotoxic T lymphocytes (CTL) are able to lyse influenza-infected cells by recognition of NP, the major target molecule in virus for CTL responses. On the other hand,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 78 21  شماره 

صفحات  -

تاریخ انتشار 2004